Advancing system-level verification
using UVM in SystemC

Martin Barnasconi, NXP Semiconductors
Francois Pécheux, University Pierre and Marie Curie
Thilo Vortler, Fraunhofer 11IS/EAS

\

Ur”MC Z Fraunhofer

IRRl SORBONNE

h o
L

1S

A Outline

* |ntroduction
— Universal Verification Methodology (UVM) ... what is it?

* Motivation
e Why UVM in SystemC?

* UVM-SystemC overview
— UVM foundation elements
— UVM test bench and test creation

e Contribution to Accellera
e Summary and outlook
* Acknowledgements

Introduction: UVM - what is it?

CONFERENCE & EXHIBITION

* Universal Verification Methodology facilitates the creation of

modular, scalable, configurable and reusable test benches
— Based on verification components with standardized interfaces

* Class library which provides a set of built-in features

dedicated to simulation-based verification
— Utilities for phasing, component overriding (factory), configuration,
comparing, scoreboarding, reporting, etc.

* Environment supporting migration from directed testing

towards Coverage Driven Verification (CDV)
— Introducing automated stimulus generation, independent result
checking and coverage collection

A Motivation

No structured nor unified verification Verification & Validation
methodology available for ESL design Methodology
UVM (in SystemVerilog) primarily
targeting block/IP level (RTL)

L -AMS \
verification, not system-level e scv

Porting UVM to SystemC/C++ enables SHETEMEANS |
— creation of more advanced system-level

test benches >ystem 4
— reuse of verification components C++
between system-level and block-level -
verification
Target to make UVM truly universal, *UVM-SystemC= UVMimplemented in
SystemC/C++

and not tied to a particular language

DESIGN & VERIFICATION
P T 2

@y Why UVM in SystemC/C++ ?

CONFERENCE & EXHIBITION

* Strong need for a system-level verification methodology for
embedded systems which include HW/SW and AMS functions

— SystemCis the recognized standard for system-level design, and needs to
be extended with advanced verification concepts
— SystemCAMS available to cover the AMS verification needs

e Vision: Reuse tests and test benches across verification

(simulation) and validation (HW prototyping) platforms
— This requires a portable language like C++ to run tests on
HW prototypes and even measurement equipment
— Enabling Hardware-in-the-Loop (HiL) simulation or Rapid Control
Prototyping (RCP)

* Benefit from proven standards and reference implementations
— Leverage from existing methodology standards and reference
implementations, aligned with best practices in verification

el UVM-SystemC overview
| UVM-ystemCfunctionality | Status

Test bench creation with component classes: V]
agent, sequencer, driver, monitor, scoreboard, etc.

Test creation with test, (virtual) sequences, etc. V]
Configuration and factory mechanism V]
Phasing and objections V]
Policies to print, compare, pack, unpack, etc. v/
Messaging and reporting V]
Register abstraction layer and callbacks development
Coverage groups development
Constrained randomization SCV or CRAVE

6

g3 UVM layered architecture

st cass)

Verification component®, [>

!
Functional | | Sequencer —FPM}—

Functional coverage

Device

gy UVM-SystemC phasing

CONFERENCE & EXHIBITION

UVM common phases

le——— Pre-run phases S Runtime phases S Post-run phases —— |
build W connect‘] A A run @ extract‘] check A reportA] final Wj | i
B . T
| |
before_en&_of_elaboration* I I end_of_simulation*
) UVM runtime phases A
end_of elaboration . @
. . Legend
start_of simulation
configure ~ main shutdown @ =SystemCprocess(es)

v =top-down execution

pre-reset post-reset
A =bottom-up execution

reset * =SystemC-only callback

* UVM phases are mapped on the SystemCphases
* UVM-SystemCsupportsthe 9 common phases and the
(optional) refined runtime phases

 Completion of a runtime phase happens as soon as there are

no objections (anymore) to proceed to the next phase
8

ssia UVM agent

CONFERENCE & EXHIBITION

*
agent P
* Componentresponsible for driving and ' config | |
monitoring the DUT sequencer | _-IZI1I |
| L
. . seq_item_export [anaIySIS' |
* Typically contains three components Lo
— Sequencer \;>
_ Driver seq_item_port item_collected_po
. driver monitor
— Monitor
e (Can contain analysis functionality for

basic coverage and checking

* Possible configurations

— Active agent: sequencer and driver are enabled
— Passive agent: only monitors signals
(sequencer and driver are disabled)

* C++baseclass: uvm_agent

CONFERENCE & EXHIBITION

UVM-SystemC agent

{

if (get_is_active()

{

assert(sequencer);
driver =
assert(driver);

}

monitor =
assert(monitor);

virtual void build_phase(uvm_phase& phase)

uvm_agent::build_phase(phase); by

UVM_ACTIVE)

vip_monitor::type_id::create("monitor", this);

instantiated in
the build phase

i . i A) | 4
Elass vip_agent : public uvm_agent — Dedicated base class to Se ™N
public: distinguish agents from — agen} ______ :
vip_sequencer<vip_trans>* sequencer; other component types : config I :
vip_driver<vip_trans>* driver; [I
vip_monitor* monitor; sequencer ======= : :
_ Registers the object seq_item_export | 1 @nalysis! i
UVM_COMPONENT_UTILS(vip_agent) —— in the factory (T _X______ _:
vip_agent(uvm_name name) L \/
: uvm_agent(name), sequencer(®9), driver(®), monitor(0) {} seq_item_port item_collected_po
Cnlsranars driver monitor

Essential call to base class to

access properties of the agent

sequencer = vip_sequencer<vip_trans>::type_id: :create("sequencer", this);

vip_driver<vip_trans>::type_id::create("driver", this);

N

Call to the factory which creates and
instantiates this component dynamically

10

NOTE: UVM—SistemC APl under review — subject to chanie

CONFERENCE & EXHIBITION

{

{

}

};

if (get_is_active()

virtual void connect_phase(uvm_phase& phase)

UVM_ACTIVE)

// connect sequencer to driver
driver->seq_item_port.connect(sequencer->seq_item_export);

N

.

4
I
agent I\
----- =
1 config 1
L - U
sequencer | _______ .
| . |
seq_item_export | anaIySIS' I
L__\"I___ I
R
u O
seq_item_port item_collected_po
driver monitor

NOTE: UVI\/I—SistemC APl under review — subject to chanie

Only the connection between sequencer

and driver is made here. Connection of

driver and monitor to the DUT is done via

the configuration mechanism

11

* A UVM verification component
(UVC) is an environment which
consists of one or more
cooperating agents

* UVCsor agents may set or get
configuration parameters

* Anindependent test sequenceis
processed by the driver via a
sequencer

* Each verification componentis
connectedto the DUT using a
dedicated interface

* C++baseclass: uvm_env

il UVM verification component

(UVM verification component (env)\

| config
- agent \\
¥
\\ Y,
< </
-

il UVM verification component

CONFERENCE & EXHIBITION

class vip_uvc : public uvm env AUVCis consideredasa | yM verification component\
{ sub-environmentin large () |==—————-
public: system-level environments | \€MV 1 config |
vip_agent* agent; /0 — S5&0 —
agent A

UVM_COMPONENT_UTILS(vip uvc);

vip_uvc(uvm_name name)
: uvm_env(name), agent(9) {}

virtual void build_phase(uvm_phase& phase) Y,

{

uvm_env: :build_phase(phase);

agent = vip_agent::type_id: :create("agent", this);
assert(agent);

}

}s \\\ J)

* Inthis example, the UVM verification component (UVC)
containsonly one agent. In practice, more agents are likely to

be instantiated
13

NOTE: UVM—SistemC APl under review — subject to chanie

* Sequencesare part of the test scenario and
define streams of transactions

 The properties (or attributes) of a transaction

are captured in a sequence item
* Sequencesare not part of the test bench

v UVM sequences

CONFERENCE & EXHIBITION

hierarchy, but are mapped onto one or more

sequencers

* Sequencescan be layered, hierarchical or
virtual, and may contain multiple
sequences or sequence items

S€0__

7

!

el

A enmionee
Csequence >

S

* Sequencesand transactions can be configured

via the factory

/

14

g3 UVM-SystemC sequence item

CONFERENCE & EXHIBITION

class vip_trans : public uvm_sequence_item\ Transaction
{ . defined as m '
public: i i sequence item

int addr; User-defined data items q

int data; (randomization can be

bus op_t op; done using SCV or CRAVE)

UVM_OBJECT_UTILS(vip_trans);

vip_trans(const std::string& name = "vip_trans")
: addr(ex0), data(exe), op(BUS READ) {}

virtual void do_print(uvm_printer& printer) const { ... }

virtual void do_pack(uvm_packer& packer) const { ... }

virtual void do_unpack(uvm_packer& packer) { ... }

virtual void do_copy(const uvm_object* rhs) { ... }

virtual bool do_compare(const uvm_object* rhs) const { ... }
}s \ A sequence item should implement

all elementary member functions to
print, pack, unpack, copy and
comparethe data items
(thereare no field macrosin
UVM-SystemC)

15

NOTE: UVM—SistemC APl under review — subject to chanie

“"2"61; UVM-SystemC sequence

CONFERENCE & EXHIBITION

template <typename REQ = uvm_sequence_item, typename RSP = REQ>
class sequence : public uvm_sequence<REQ,RSP>
{
public:
sequence(const std::string& name) Factory registration
: uvm_sequence<REQ,RSP>(name)/j;/

supports template classes

UVM_OBJECT_PARAM_UTILS (sequence<REQ,RSP>); F

Raise objection if there is
virtual void pre_body() {)

if (starting_phase != NULL) - no parentsequence
starting_phase->raise_objection(this);

}

A sequence contains a request
and (optional) response, both
defined as sequence item

virtual void body() {
REQ* req;
RSP* rsp;

Compatibility layer to SCV or
—— CRAVE not yet available

start_item(req);

finish_item(req); :
get_response(rsp); — Optional: get response

}

virtual void post_body() {
if (starting_phase != NULL) starting_phase->drop_objection(this);
}

};

16

NOTE: UVM—SistemC APl under review — subject to chanie

CONFERENCE & EXHIBITION

A test bench is the environment
which instantiates and configures
the UVCs, scoreboard, and
(optional) virtual sequencer

The test bench connects
— Agent sequencer(s) in each UVC with
the virtual sequencer (if defined)
— Monitor analysis port(s) in each UVC
with the scoreboard subscriber(s)
— Note: The driver and monitor in each

agent connect to the DUT using the interface

stored in the configuration database

C++ base class: uvm_env

UVM environment (test bench)

virtual
seqguencer

1
1
1
1
\

Na—

rUVCl@nw‘

agent agent
Sar i confi Sqr i confi
Drv | | Mo Drv || Mo

CONFERENCE & EXHIBITION

UVM-SystemC test bench

class testbench : public uvm_env
. A ——— N
{ blic: AIIcomponentSIn the Testbench (env) ;
public: . -_____i
e T I test bench will be
vip_uvc* UveD s dynamically instan- i "_'"'l" SC?_r?P_Oard
virt_sequencer* virtual sequencer; | tiated so they can be ! virtua : oval | |Subser
scoreboard* scoreboardl; overidden by the test .\sequencer e d
if needed) .|, —
UVM_COMPONENT_UTILS (testbench); UVCL (env) UVC2 (env)
testbench(uvm_name name) agent agent
: uvm_env(name), uvcl(@), uvc2(9), i i
virtual _sequencer(®), scoreboardl(9) {} Sar :_C?[‘f_: Sar :_C_Off_:
virtual void build phase(uvm_phase& phase) Drv || Mo Drv || Mo
{ \ .
uvm_env: :build_phase(phase); \ - y
uvcl = vip_uvc::type_id::create("uvcl", this);
assert(uvcl);
uvc2 = vip_uvc::type_id::create("uvc2", this);
assert(uvc2);
set_config int("uvcl.*", "is_active", UVM_ACTIVE); Definition of active or
set_config_int("uvc2.*", "is active", UVM_PASSIVE); passive UVCs
18

NOTE: UVM—SistemC APl under review — subject to chanie

CONFERENCE & EXHIBITION

UVM-SystemC test bench

};

virtual_sequencer = virt_sequencer::type_id: :create(
"virtual sequencer", this);
assert(virtual_sequencer);

scoreboardl =

scoreboard: :type_id::create("scoreboardl", this);
assert(scoreboardl);

} Virtual sequencer points
to UVC sequencer

virtual void connect_phase(uvm_phase& phaselz/////
{

virtual sequencer->vip_seqr = uvcl->agent->sequencer;

uvcl->agent->monitor->item_collected_port.connect(
scoreboardl->xmt_listener_imp);

uvc2->agent->monitor->item_collected_port. connect(
scoreboardl->rcv_listener_imp);

| N

Analysis ports of the
monitors are connected
to the scoreboard

(Testbench (env)

------- N scoreboard
| virtual Subscr { eval E Subscr
| sequencer i |
isequencergl _d_Jt____
UVC1 (env) UVC2 (env)
agent agent
Sqr Econfi Sqr Econf:
Drv || Mo Drv | Mo
il

subscribers (listeners)

19

NOTE: UVM—SistemC APl under review — subject to chanie

Each UVM test is defined as a
dedicated C++ test class, which
instantiates the test bench and
defines the test sequence(s)

Reuse of tests and topologies is
possible by deriving tests from a test
base class

The UVM configuration and factory
conceptcan be used to configure or
override UVM components,
sequences or sequence items

C++ base class: uvm_test

UVM test

(

—— default
s
Test sequence

r Testbench (env)

20

-45%1'% UVM-SystemC test

CONFERENCE & EXHIBITION

. - ——= default :
class test : public uvm_test s : : Test ' config
(— ipeuf;classfto |dent|fy the == sequence i i

SUBIRICE est objects for execution in

-
testbench* tb; the sc_main program Testbench (env)
bool test_pass;

test(uvm_name name) : uvm_test(name),
tb(0), test_pass(true) {}

Thetest instantiates
the required test bench

virtual void build_phase(uvm_phase& phase)
{

UVM_COMPONENT_UTILS (test);

uvm_test: :build_phase(phase);
tb = testbench::type_id::create("tb", this);
assert(tb);

uvm_config db<uvm_object_wrapper*>::set(this,
tb.uvcl.agent.sequencer.run_phase", "default_sequence", Configuration of the default sequence,
vip_sequence<vip_trans>::type_id::get()); } TT—u which will be executed on the

sequencer of the agentin UVC1

set_type_override_by_ type(vip_driver<vip trans>::get_type(),
new_driver<vip trans>::get_type());

| Factory method to override the
original driver with a new driver

21

NOTE: UVM—SistemC APl under review — subject to chanie

CONFERENCE & EXHIBITION

UVM-SystemC test

{

}

{

}

{

};

virtual void run_phase(uvm_phase& phase)

UVM_INFO(get_name(),
"** UVM TEST STARTED **", UVM_NONE);

virtual void extract_phase(uvm_phase& phase)

Get result of the scoreboard

if (tb->scoreboardl.error))
in the extract phase

test _pass = false;

virtual void report_phase(uvm_phase& phase)

if (test_pass)

UVM_INFO(get_name(), "** UVM TEST PASSED **", UVM_NONE);

else
UVM_ERROR(get_name(), "** UVM TEST FAILED **");

e ———)
—— default .
= config
e sequence —]
4 N
Testbench (env) g
\,
\ y,
| Reportresults in
the report phase
22

NOTE: UVM—SistemC APl under review — subject to chanie

CONFERENCE & EXHIBITION

* Thetop-level (e.g. sc_main)

contains the test(s)and the DUT

The interface to which the DUT is
connectedis stored in the
configuration database, so it can
be used by the UVCs to connect
tothe DUT

The test to be executed is either
defined by the test class
instantiation or by the argument
of the member function run_test

top (sc_main)

y =

y -

A
default
Test sequence

'[é%tbench (env)

r=—===- \

\

\
(~e-----
| virtual
| sequencert

—"

,——— -

—————

scoreboard

ref Subscr
model

i |Subscr|
[

———

-

! UvC2 (env)‘

Sqr ! confi

Drv | Mo

DUT

4
——————

CONFERENCE & EXHIBITION

The main program

{

int sc_main(int, char*[])

Instantiate
/ the DUTand
dut* my dut = new dut("my_dut"); interfaces

vip_if* vif_uvcl
vip_if* vif _uvc2

new vip_if;
new vip_if;

/

:set(0,

uvm_config _db<vip_ if*>:
uvm_config db<vip if*>::set(9,

my_dut->in(vif_uvcl->sig a);
my dut->out(vif_uvc2->sig a);

run_test("test");

register interface

using the configuration

database

"*.uvcl.*",
"vif", vif uvcl);
"*.uvc2.*",
"vif", vif _uvc2);

Connect DUT to
the interface

N

sc_start();

return 0;

Register the test to be
executed. This function
also dynamically
instantiates the test if
given as argument

top (sc_main)

y =

y -

y
Test

defauh
sequence

s

'[é%tbench (env)

,——— -

:conﬂg'

scoreboard

(Y
I .
i virtual l Subscr
:sequencer!
4 e

ref
model

|Subscr

! l}jVC1 (env)‘

1
1
y agent

,————

Sqr | conf |

! UvC2 (env)‘

agent

,————

1 1
1 conf i

Sqr

Mo

A

Drv

DUT

-

24

NOTE: UVI\/I—SistemC APl under review — subject to chanie

CONFERENCE & EXHIBITION

Objective: seek further industry
support and standardization of
UVM in SystemC

UVM-SystemC contribution to

Accellera Verification WG
— UVM-SystemC Language Reference
Manual (LRM)
— UVM-SystemC Proof-of-Concept
implementation, released under
Apache 2.0 license

Align with SCV and Multi-Language
requirements and future
developments

Contribution to Accellera

UVM-SystemC
(UVM-SO)

Language Reference Manual

LODRAFT

6.4 uvm_factory

The class wvm_ :cnnu:plmu a factary pattera. A singletan factory Estance i created for 3 g

pes mnnpﬂmdmmmb:.cm ming proxies o the actual chjec
'h;snsnm ,_objec egm:rr-T - and wvmm_campenent_ rgslrr- > arw nsed to

s simalation
s 22 compensats
to proxy chjects

of typs wvm_object and urm_component raspectively. These registry classes o the wvm_object wrapper

641 Clazz definition

Siass uvm factory |
poblic:
wv_tactory (1 ;

v emetemy il

/f Group: Registericg types

void dn registar” | uwm_chiect wswppar® abf §: 4 ix register’ fn OV standerd

SO1e Summary and outlook

* Universal Verification Methodology created in SystemC/C++
— Fully compliant with UVM standard
— Targetis to make all essential features of UVM available in
SystemC/C++
— UVM-SystemClanguage definition and proof-of-concept
implementation contributed to Accellera Systems Initiative

* Ongoing developments
— Extend UVM-SystemC with constrained randomization capabilities
using SystemC Verification Library (SCV) or CRAVE
— Introduction of assertions and functional coverage features
— Addregister abstraction layer and callback mechanism
— Introduce SystemC-AMS to support AMS system-level verification

Acknowledgements

* The development of the UVM-SystemCmethodology and
library has been supported by the European Commission as
part of the Seventh Framework Programme (FP7) for Research
and Technological Development in the project 'VERIFICATION
FOR HETEROGENOUS RELIABLE DESIGN AND INTEGRATION'
(VERDI).

The research leading to these results has received funding
from the European Commission under grand agreement No

287562.

HOW STAN PROUFERATE:
(S AfC CHARGERS, me&RDaugmm INSTANT MESSAGING, ETC)

17! RDICULoLS! SOON:
WE NEED To DEVELOP
SITUATION: || SEVRVERAL SHORE | | SiTuATION:
THERE. ARE USE. CASES. VEAH THERE ARE
4 COMPETING \ ® il I5 COMPETING
STANDPRDS. STANDPRDS.

)

xked-com

