
Advancing system-level verification
using UVM in SystemC

Martin Barnasconi, NXP Semiconductors
François Pêcheux, University Pierre and Marie Curie

Thilo Vörtler, Fraunhofer IIS/EAS

• Introduction
– Universal Verification Methodology (UVM) … what is it?

• Motivation

• Why UVM in SystemC?

• UVM-SystemC overview
– UVM foundation elements
– UVM test bench and test creation

• Contribution to Accellera

• Summary and outlook

• Acknowledgements

Outline

• Universal Verification Methodology facilitates the creation of
modular, scalable, configurable and reusable test benches
– Based on verification components with standardized interfaces

• Class library which provides a set of built-in features
dedicated to simulation-based verification
– Utilities for phasing, component overriding (factory), configuration,

comparing, scoreboarding, reporting, etc.

• Environment supporting migration from directed testing
towards Coverage Driven Verification (CDV)
– Introducing automated stimulus generation, independent result

checking and coverage collection

 Introduction: UVM - what is it?

3

• No structured nor unified verification
methodology available for ESL design

• UVM (in SystemVerilog) primarily
targeting block/IP level (RTL)
verification, not system-level

• Porting UVM to SystemC/C++ enables
– creation of more advanced system-level

test benches
– reuse of verification components

between system-level and block-level
verification

• Target to make UVM truly universal,
and not tied to a particular language

Motivation

4

C++

SystemC-AMS
TLM SCV

UVM-SystemC* -AMS

Verification & Validation

Methodology

SystemC

-AMS

*UVM-SystemC = UVM implemented in
SystemC/C++

• Strong need for a system-level verification methodology for
embedded systems which include HW/SW and AMS functions
– SystemC is the recognized standard for system-level design, and needs to

be extended with advanced verification concepts
– SystemC AMS available to cover the AMS verification needs

• Vision: Reuse tests and test benches across verification
(simulation) and validation (HW prototyping) platforms
– This requires a portable language like C++ to run tests on

HW prototypes and even measurement equipment
– Enabling Hardware-in-the-Loop (HiL) simulation or Rapid Control

Prototyping (RCP)

• Benefit from proven standards and reference implementations
– Leverage from existing methodology standards and reference

implementations, aligned with best practices in verification

Why UVM in SystemC/C++ ?

5

UVM-SystemC functionality Status

Test bench creation with component classes:
agent, sequencer, driver, monitor, scoreboard, etc.



Test creation with test, (virtual) sequences, etc. 

Configuration and factory mechanism 

Phasing and objections 

Policies to print, compare, pack, unpack, etc. 

Messaging and reporting 

Register abstraction layer and callbacks development

Coverage groups development

Constrained randomization SCV or CRAVE

UVM-SystemC overview

6

UVM layered architecture

7

Spec

Test cases

Scenario

Signal

Test cases Test

Fu
n

ct
io

n
al

 c
o

ve
ra

ge

Functional

Command Monitor

Scoreboard Sequencer

Driver Monitor

Verification component

Verification environment (test bench)

Device
under test

Sequences

• UVM phases are mapped on the SystemC phases

• UVM-SystemC supports the 9 common phases and the
(optional) refined runtime phases

• Completion of a runtime phase happens as soon as there are
no objections (anymore) to proceed to the next phase

UVM-SystemC phasing

8

run

reset

configure main shutdown

connect extract check report final

UVM runtime phases 



UVM common phases

build

end_of_elaboration

start_of_simulation

pre-reset post-reset

 = SystemC process(es)

        





= top-down execution

= bottom-up execution

Legend

before_end_of_elaboration* end_of_simulation*

= SystemC-only callback *

Pre-run phases Runtime phases Post-run phases



• Component responsible for driving and
monitoring the DUT

• Typically contains three components
– Sequencer
– Driver
– Monitor

• Can contain analysis functionality for
basic coverage and checking

• Possible configurations
– Active agent: sequencer and driver are enabled
– Passive agent: only monitors signals

(sequencer and driver are disabled)

• C++ base class: uvm_agent

UVM agent
agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vif vif

analysis

9

UVM-SystemC agent
class vip_agent : public uvm_agent
{
 public:
 vip_sequencer<vip_trans>* sequencer;
 vip_driver<vip_trans>* driver;
 vip_monitor* monitor;

 UVM_COMPONENT_UTILS(vip_agent)

 vip_agent(uvm_name name)
 : uvm_agent(name), sequencer(0), driver(0), monitor(0) {}

 virtual void build_phase(uvm_phase& phase)
 {
 uvm_agent::build_phase(phase);

 if (get_is_active() == UVM_ACTIVE)
 {
 sequencer = vip_sequencer<vip_trans>::type_id::create("sequencer", this);
 assert(sequencer);
 driver = vip_driver<vip_trans>::type_id::create("driver", this);
 assert(driver);
 }

 monitor = vip_monitor::type_id::create("monitor", this);
 assert(monitor);
 }
 ...

Dedicated base class to
distinguish agents from
other component types

Registers the object
in the factory

Call to the factory which creates and
instantiates this component dynamically

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vif vif

analysis

Essential call to base class to
access properties of the agent

NOTE: UVM-SystemC API under review – subject to change
10

Children are
instantiated in
the build phase

UVM-SystemC agent

 ...

 virtual void connect_phase(uvm_phase& phase)
 {

 if (get_is_active() == UVM_ACTIVE)
 {
 // connect sequencer to driver
 driver->seq_item_port.connect(sequencer->seq_item_export);
 }

 }
};

Only the connection between sequencer
and driver is made here. Connection of

driver and monitor to the DUT is done via
the configuration mechanism

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vif vif

analysis

NOTE: UVM-SystemC API under review – subject to change
11

• A UVM verification component
(UVC) is an environment which
consists of one or more
cooperating agents

• UVCs or agents may set or get
configuration parameters

• An independent test sequence is
processed by the driver via a
sequencer

• Each verification component is
connected to the DUT using a
dedicated interface

• C++ base class: uvm_env

UVM verification component

12

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

UVM verification component (env)

config

trans

seq

vif vif

config

analysis

• In this example, the UVM verification component (UVC)
contains only one agent. In practice, more agents are likely to
be instantiated

UVM verification component

13

class vip_uvc : public uvm_env
{
 public:
 vip_agent* agent;

 UVM_COMPONENT_UTILS(vip_uvc);

 vip_uvc(uvm_name name)
 : uvm_env(name), agent(0) {}

 virtual void build_phase(uvm_phase& phase)
 {
 uvm_env::build_phase(phase);

 agent = vip_agent::type_id::create("agent", this);
 assert(agent);
 }

};

UVM verification component
(env) config

A UVC is considered as a
sub-environment in large

system-level environments

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vif vif

config

analysis

NOTE: UVM-SystemC API under review – subject to change

• Sequences are part of the test scenario and
define streams of transactions

• The properties (or attributes) of a transaction
are captured in a sequence item

• Sequences are not part of the test bench
hierarchy, but are mapped onto one or more
sequencers

• Sequences can be layered, hierarchical or
virtual, and may contain multiple
sequences or sequence items

• Sequences and transactions can be configured
via the factory

UVM sequences

14

transaction

transaction

transaction

sequence

seq

seq1

seq2

trans

trans

seq1

trans

trans

seq2

UVM-SystemC sequence item
class vip_trans : public uvm_sequence_item
{
 public:

 int addr;
 int data;
 bus_op_t op;

 UVM_OBJECT_UTILS(vip_trans);

 vip_trans(const std::string& name = "vip_trans")
 : addr(0x0), data(0x0), op(BUS_READ) {}

 virtual void do_print(uvm_printer& printer) const { ... }

 virtual void do_pack(uvm_packer& packer) const { ... }
 virtual void do_unpack(uvm_packer& packer) { ... }
 virtual void do_copy(const uvm_object* rhs) { ... }
 virtual bool do_compare(const uvm_object* rhs) const { ... }

};

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

Transaction
defined as

sequence item

trans

seq

vif vif

config

analysis

User-defined data items
(randomization can be

done using SCV or CRAVE)

A sequence item should implement
all elementary member functions to

print, pack, unpack, copy and
compare the data items

(there are no field macros in
UVM-SystemC)

NOTE: UVM-SystemC API under review – subject to change
15

UVM-SystemC sequence

16

template <typename REQ = uvm_sequence_item, typename RSP = REQ>
class sequence : public uvm_sequence<REQ,RSP>
{

 public:
 sequence(const std::string& name)
 : uvm_sequence<REQ,RSP>(name) {}

 UVM_OBJECT_PARAM_UTILS(sequence<REQ,RSP>);

 virtual void pre_body() {
 if (starting_phase != NULL)
 starting_phase->raise_objection(this);
 }

 virtual void body() {
 REQ* req;
 RSP* rsp;
 ...

 start_item(req);
 // req->randomize();
 finish_item(req);
 get_response(rsp);
 }

 virtual void post_body() {
 if (starting_phase != NULL) starting_phase->drop_objection(this);
 }
};

A sequence contains a request
and (optional) response, both

defined as sequence item

Compatibility layer to SCV or
CRAVE not yet available

Optional: get response

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vif vif

config

analysis

Factory registration
supports template classes

NOTE: UVM-SystemC API under review – subject to change

Raise objection if there is
no parent sequence

• A test bench is the environment
which instantiates and configures
the UVCs, scoreboard, and
(optional) virtual sequencer

• The test bench connects
– Agent sequencer(s) in each UVC with

the virtual sequencer (if defined)
– Monitor analysis port(s) in each UVC

with the scoreboard subscriber(s)
– Note: The driver and monitor in each

agent connect to the DUT using the interface
stored in the configuration database

• C++ base class: uvm_env

 UVM environment (test bench)

17

Testbench (env) config

…..
agent

UVC1 (env)

Mon Drv

Sqr

agent

UVC2 (env)

Mon Drv

Sqr conf

scoreboard

Subscr
2

eval
Subscr

1

conf

virtual
sequencer

UVM-SystemC test bench

18

class testbench : public uvm_env
{
 public:
 vip_uvc* uvc1;
 vip_uvc* uvc2;
 virt_sequencer* virtual_sequencer;
 scoreboard* scoreboard1;

 UVM_COMPONENT_UTILS(testbench);

 testbench(uvm_name name)
 : uvm_env(name), uvc1(0), uvc2(0),
 virtual_sequencer(0), scoreboard1(0) {}

 virtual void build_phase(uvm_phase& phase)
 {
 uvm_env::build_phase(phase);

 uvc1 = vip_uvc::type_id::create("uvc1", this);
 assert(uvc1);
 uvc2 = vip_uvc::type_id::create("uvc2", this);
 assert(uvc2);

 set_config_int("uvc1.*", "is_active", UVM_ACTIVE);
 set_config_int("uvc2.*", "is_active", UVM_PASSIVE);

 ...

Definition of active or
passive UVCs

All components in the
test bench will be

dynamically instan-
tiated so they can be
overidden by the test

if needed

NOTE: UVM-SystemC API under review – subject to change

Testbench (env) config

…..
agent

UVC1 (env)

Mon Drv

Sqr

agent

UVC2 (env)

Mon Drv

Sqr conf

scoreboard

Subscr
2

eval
Subscr

1

conf

virtual
sequencer

UVM-SystemC test bench

19

 ...
 virtual_sequencer = virt_sequencer::type_id::create(
 "virtual_sequencer", this);
 assert(virtual_sequencer);

 scoreboard1 =
 scoreboard::type_id::create("scoreboard1", this);
 assert(scoreboard1);
 }

 virtual void connect_phase(uvm_phase& phase)
 {
 virtual_sequencer->vip_seqr = uvc1->agent->sequencer;

 uvc1->agent->monitor->item_collected_port.connect(
 scoreboard1->xmt_listener_imp);

 uvc2->agent->monitor->item_collected_port.connect(
 scoreboard1->rcv_listener_imp);
 }

};

Analysis ports of the
monitors are connected

to the scoreboard
subscribers (listeners)

Virtual sequencer points
to UVC sequencer

NOTE: UVM-SystemC API under review – subject to change

Testbench (env) config

…..
agent

UVC1 (env)

Mon Drv

Sqr

agent

UVC2 (env)

Mon Drv

Sqr conf

scoreboard

Subscr
2

eval
Subscr

1

conf

virtual
sequencer

• Each UVM test is defined as a
dedicated C++ test class, which
instantiates the test bench and
defines the test sequence(s)

• Reuse of tests and topologies is
possible by deriving tests from a test
base class

• The UVM configuration and factory
concept can be used to configure or
override UVM components,
sequences or sequence items

• C++ base class: uvm_test

UVM test

20

Testbench (env)

…..
agent

UVC1 (env)

Mon Drv

Sqr

agent

UVC2 (env)

Mon Drv

Sqr conf conf

config

virtual
sequencer

scoreboard

Subscr
2

ref
model

Subscr
1

Test config default

sequence

UVM-SystemC test

21

class test : public uvm_test
{
 public:

 testbench* tb;
 bool test_pass;

 test(uvm_name name) : uvm_test(name),
 tb(0), test_pass(true) {}

 UVM_COMPONENT_UTILS(test);

 virtual void build_phase(uvm_phase& phase)
 {

 uvm_test::build_phase(phase);
 tb = testbench::type_id::create("tb", this);
 assert(tb);

 uvm_config_db<uvm_object_wrapper*>::set(this,

 tb.uvc1.agent.sequencer.run_phase", "default_sequence",
 vip_sequence<vip_trans>::type_id::get()); }

 set_type_override_by_type(vip_driver<vip_trans>::get_type(),

 new_driver<vip_trans>::get_type());

 ...

Testbench (env)

…..
agent

UVC1 (env)

Mon Drv

Sqr

agent

UVC2 (env)

Mon Drv

Sqr conf conf

config

virtual
sequencer

scoreboard

Subscr
2

ref
model

Subscr
1

Test config default

sequence

Configuration of the default sequence,
which will be executed on the

sequencer of the agent in UVC1

The test instantiates
the required test bench

Specific class to identify the
test objects for execution in

the sc_main program

NOTE: UVM-SystemC API under review – subject to change

Factory method to override the
original driver with a new driver

UVM-SystemC test

22

 ...

 virtual void run_phase(uvm_phase& phase)
 {
 UVM_INFO(get_name(),
 "** UVM TEST STARTED **", UVM_NONE);
 }

 virtual void extract_phase(uvm_phase& phase)
 {
 if (tb->scoreboard1.error)
 test_pass = false;
 }

 virtual void report_phase(uvm_phase& phase)
 {
 if (test_pass)
 UVM_INFO(get_name(), "** UVM TEST PASSED **", UVM_NONE);
 else
 UVM_ERROR(get_name(), "** UVM TEST FAILED **");
 }
};

Report results in
the report phase

Testbench (env)

…..
agent

UVC1 (env)

Mon Drv

Sqr

agent

UVC2 (env)

Mon Drv

Sqr conf conf

config

virtual
sequencer

scoreboard

Subscr
2

ref
model

Subscr
1

Test config default

sequence

Get result of the scoreboard
 in the extract phase

NOTE: UVM-SystemC API under review – subject to change

• The top-level (e.g. sc_main)
contains the test(s) and the DUT

• The interface to which the DUT is
connected is stored in the
configuration database, so it can
be used by the UVCs to connect
to the DUT

• The test to be executed is either
defined by the test class
instantiation or by the argument
of the member function run_test

The main program (top-level)

23

DUT

top (sc_main)

Testbench (env)

…..
agent

UVC1 (env)

Mon Drv

Sqr

agent

UVC2 (env)

Mon Drv

Sqr conf conf

config

virtual
sequencer

scoreboard

Subscr
2

ref
model

Subscr
1

Test config default

sequence

int sc_main(int, char*[])
{

 dut* my_dut = new dut("my_dut");

 vip_if* vif_uvc1 = new vip_if;
 vip_if* vif_uvc2 = new vip_if;

 uvm_config_db<vip_if*>::set(0, "*.uvc1.*",
 "vif", vif_uvc1);
 uvm_config_db<vip_if*>::set(0, "*.uvc2.*",

 "vif", vif_uvc2);

 my_dut->in(vif_uvc1->sig_a);
 my_dut->out(vif_uvc2->sig_a);

 run_test("test");

 sc_start();

 return 0;
}

The main program

24

Instantiate
the DUT and

interfaces

Register the test to be
executed. This function

also dynamically
instantiates the test if

given as argument

Connect DUT to
the interface

DUT

top (sc_main)

register interface
using the configuration

database

Testbench (env)

…..
agent

UVC1 (env)

Mon Drv

Sqr

agent

UVC2 (env)

Mon Drv

Sqr conf conf

config

virtual
sequencer

scoreboard

Subscr
2

ref
model

Subscr
1

Test config default

sequence

NOTE: UVM-SystemC API under review – subject to change

• Objective: seek further industry
support and standardization of
UVM in SystemC

• UVM-SystemC contribution to
Accellera Verification WG
– UVM-SystemC Language Reference

Manual (LRM)
– UVM-SystemC Proof-of-Concept

implementation, released under
Apache 2.0 license

• Align with SCV and Multi-Language
requirements and future
developments

Contribution to Accellera

25

• Universal Verification Methodology created in SystemC/C++
– Fully compliant with UVM standard
– Target is to make all essential features of UVM available in

SystemC/C++
– UVM-SystemC language definition and proof-of-concept

implementation contributed to Accellera Systems Initiative

• Ongoing developments
– Extend UVM-SystemC with constrained randomization capabilities

using SystemC Verification Library (SCV) or CRAVE
– Introduction of assertions and functional coverage features
– Add register abstraction layer and callback mechanism
– Introduce SystemC-AMS to support AMS system-level verification

Summary and outlook

26

• The development of the UVM-SystemC methodology and
library has been supported by the European Commission as
part of the Seventh Framework Programme (FP7) for Research
and Technological Development in the project 'VERIFICATION
FOR HETEROGENOUS RELIABLE DESIGN AND INTEGRATION'
(VERDI).
The research leading to these results has received funding
from the European Commission under grand agreement No
287562.

Acknowledgements

27

xkcd.com

