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• Universal Verification Methodology facilitates the creation of 
modular, scalable, configurable and reusable test benches 
– Based on verification components with standardized interfaces  

• Class library which provides a set of built-in features 
dedicated to simulation-based verification 
– Utilities for phasing, component overriding (factory), configuration, 

comparing, scoreboarding, reporting, etc. 

• Environment supporting migration from directed testing 
towards Coverage Driven Verification (CDV)  
– Introducing automated stimulus generation, independent result 

checking and coverage collection 
 

   Introduction: UVM - what is it? 
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• No structured nor unified verification 
methodology available for ESL design  

• UVM (in SystemVerilog) primarily 
targeting block/IP level (RTL) 
verification, not system-level  

• Porting UVM to SystemC/C++ enables 
– creation of more advanced system-level 

test benches 
– reuse of verification components 

between system-level and block-level 
verification 

• Target to make UVM truly universal, 
and not tied to a particular language 

 

Motivation 
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• Strong need for a system-level verification methodology for 
embedded systems which include HW/SW and AMS functions 
– SystemC is the recognized standard for system-level design, and needs to 

be extended with advanced verification concepts 
– SystemC AMS available to cover the AMS verification needs 

• Vision: Reuse tests and test benches across verification 
(simulation) and validation (HW prototyping) platforms 
– This requires a portable language like C++ to run tests on  

HW prototypes and even measurement equipment 
– Enabling Hardware-in-the-Loop (HiL) simulation or Rapid Control 

Prototyping (RCP) 

• Benefit from proven standards and reference implementations 
– Leverage from existing methodology standards and reference 

implementations, aligned with best practices in verification 
 

Why UVM in SystemC/C++ ? 
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UVM-SystemC functionality Status 

Test bench creation with component classes: 
agent, sequencer, driver, monitor, scoreboard, etc. 

 

Test creation with test, (virtual) sequences, etc.  

Configuration and factory mechanism  

Phasing and objections  

Policies to print, compare, pack, unpack, etc.  

Messaging and reporting  

Register abstraction layer and callbacks development 

Coverage groups development 

Constrained randomization SCV or CRAVE 

UVM-SystemC overview 
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UVM layered architecture 
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• UVM phases are mapped on the SystemC phases 

• UVM-SystemC supports the 9 common phases and the 
(optional) refined runtime phases 

• Completion of a runtime phase happens as soon as there are 
no objections (anymore) to proceed to the next phase 

UVM-SystemC phasing 
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• Component responsible for driving and  
monitoring the DUT  

• Typically contains three components 
– Sequencer 
– Driver 
– Monitor 

• Can contain analysis functionality for  
basic coverage and checking 

• Possible configurations 
– Active agent: sequencer and driver are enabled 
– Passive agent: only monitors signals  

(sequencer and driver are disabled) 

• C++ base class: uvm_agent 
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UVM-SystemC agent 
class vip_agent : public uvm_agent 
{ 
 public: 
  vip_sequencer<vip_trans>* sequencer;  
  vip_driver<vip_trans>*    driver; 
  vip_monitor*              monitor; 
   
  UVM_COMPONENT_UTILS(vip_agent) 
 
  vip_agent( uvm_name name )  
  : uvm_agent( name ), sequencer(0), driver(0), monitor(0) {} 
 
  virtual void build_phase( uvm_phase& phase ) 
  { 
    uvm_agent::build_phase(phase); 
 
    if ( get_is_active() == UVM_ACTIVE ) 
    { 
      sequencer = vip_sequencer<vip_trans>::type_id::create("sequencer", this); 
      assert(sequencer); 
      driver = vip_driver<vip_trans>::type_id::create("driver", this); 
      assert(driver); 
    } 
 
    monitor = vip_monitor::type_id::create("monitor", this); 
    assert(monitor); 
  } 
  ... 

Dedicated base class to 
distinguish agents from 
other component types 

Registers the object 
in the factory 

Call to the factory which creates and 
instantiates this component dynamically 
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Essential call to base class to 
access properties of the agent 

NOTE: UVM-SystemC API under review – subject to change  
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UVM-SystemC agent 

  ... 
 
  virtual void connect_phase( uvm_phase& phase ) 
  { 
 
    if ( get_is_active() == UVM_ACTIVE ) 
    { 
      // connect sequencer to driver 
      driver->seq_item_port.connect(sequencer->seq_item_export); 
    } 
 
  } 
}; 

Only the connection between sequencer 
and driver is made here. Connection of 

driver and monitor to the DUT is done via 
the configuration mechanism 

agent 

driver monitor 
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NOTE: UVM-SystemC API under review – subject to change  
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• A UVM verification component 
(UVC) is an environment which 
consists of one or more  
cooperating agents 

• UVCs or agents may set or get 
configuration parameters 

• An independent test sequence is 
processed by the driver via a 
sequencer 

• Each verification component is 
connected to the DUT using a 
dedicated interface 

• C++ base class: uvm_env 

UVM verification component 
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• In this example, the UVM verification component (UVC) 
contains only one agent. In practice, more agents are likely to 
be instantiated 

UVM verification component 
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class vip_uvc : public uvm_env 
{ 
 public: 
  vip_agent* agent; 
 
  UVM_COMPONENT_UTILS(vip_uvc); 
   
  vip_uvc( uvm_name name )  
  : uvm_env( name ), agent(0) {} 
 
  virtual void build_phase( uvm_phase& phase ) 
  { 
    uvm_env::build_phase(phase); 
 
    agent = vip_agent::type_id::create("agent", this); 
    assert(agent); 
  } 
 
}; 

UVM verification component 
(env) config 
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system-level environments 
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NOTE: UVM-SystemC API under review – subject to change  



• Sequences are part of the test scenario and 
define streams of transactions 

• The properties (or attributes) of a transaction 
are captured in a sequence item 

• Sequences are not part of the test bench 
hierarchy, but are mapped onto one or more 
sequencers 

• Sequences can be layered, hierarchical or 
virtual, and may contain multiple  
sequences or sequence items 

• Sequences and transactions can be configured 
via the factory 

UVM sequences 
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UVM-SystemC sequence item 
class vip_trans : public uvm_sequence_item 
{ 
 public: 

  int addr; 
  int data; 
  bus_op_t op; 
 
  UVM_OBJECT_UTILS(vip_trans); 

 
  vip_trans( const std::string& name = "vip_trans" )  
  : addr(0x0), data(0x0), op(BUS_READ) {} 
 
  virtual void do_print( uvm_printer& printer ) const { ... } 

  virtual void do_pack( uvm_packer& packer ) const { ... } 
  virtual void do_unpack( uvm_packer& packer ) { ... } 
  virtual void do_copy( const uvm_object* rhs ) { ... } 
  virtual bool do_compare( const uvm_object* rhs ) const { ... } 
 

}; 
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trans 
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NOTE: UVM-SystemC API under review – subject to change  
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UVM-SystemC sequence 

16 

template <typename REQ = uvm_sequence_item, typename RSP = REQ> 
class sequence : public uvm_sequence<REQ,RSP> 
{ 

 public: 
  sequence( const std::string& name )  
    : uvm_sequence<REQ,RSP>( name ) {} 
 
  UVM_OBJECT_PARAM_UTILS(sequence<REQ,RSP>); 

  
  virtual void pre_body() { 
    if ( starting_phase != NULL )  
      starting_phase->raise_objection(this); 
  } 

  
  virtual void body() { 
    REQ* req; 
    RSP* rsp; 
    ... 

    start_item(req); 
    // req->randomize();  
    finish_item(req); 
    get_response(rsp); 
  } 

 
  virtual void post_body() { 
    if ( starting_phase != NULL ) starting_phase->drop_objection(this); 
  } 
}; 

A sequence contains a request 
and (optional) response, both 

defined as sequence item 

Compatibility layer to SCV or 
CRAVE not yet available 

Optional: get response  
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NOTE: UVM-SystemC API under review – subject to change  
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• A test bench is the environment  
which instantiates and configures  
the UVCs, scoreboard, and  
(optional) virtual sequencer 

• The test bench connects 
– Agent sequencer(s) in each UVC with  

the virtual sequencer (if defined) 
– Monitor analysis port(s) in each UVC  

with the scoreboard subscriber(s) 
– Note: The driver and monitor in each 

agent connect to the DUT using the interface  
stored in the configuration database 

• C++ base class: uvm_env 

 

  UVM environment (test bench) 
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UVM-SystemC test bench 
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class testbench : public uvm_env 
{ 
 public: 
  vip_uvc*        uvc1; 
  vip_uvc*        uvc2; 
  virt_sequencer* virtual_sequencer; 
  scoreboard*     scoreboard1; 
 
  UVM_COMPONENT_UTILS(testbench); 
 
  testbench( uvm_name name )  
  : uvm_env( name ), uvc1(0), uvc2(0),  
    virtual_sequencer(0), scoreboard1(0) {} 
 
  virtual void build_phase( uvm_phase& phase ) 
  { 
    uvm_env::build_phase(phase); 
 
    uvc1 = vip_uvc::type_id::create("uvc1", this); 
    assert(uvc1); 
    uvc2 = vip_uvc::type_id::create("uvc2", this); 
    assert(uvc2); 
 
    set_config_int("uvc1.*", "is_active", UVM_ACTIVE); 
    set_config_int("uvc2.*", "is_active", UVM_PASSIVE); 
 
    ... 

Definition of active or 
passive UVCs 

All components in the 
test bench will be 

dynamically instan-
tiated so they can be 
overidden by the test 

if needed 

NOTE: UVM-SystemC API under review – subject to change  
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UVM-SystemC test bench 
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    ... 
    virtual_sequencer = virt_sequencer::type_id::create( 
                          "virtual_sequencer", this); 
    assert(virtual_sequencer); 
     
    scoreboard1 =  
      scoreboard::type_id::create("scoreboard1", this); 
    assert(scoreboard1); 
  } 
 
 
  virtual void connect_phase( uvm_phase& phase ) 
  { 
    virtual_sequencer->vip_seqr = uvc1->agent->sequencer; 
 
    uvc1->agent->monitor->item_collected_port.connect( 
      scoreboard1->xmt_listener_imp); 
 
    uvc2->agent->monitor->item_collected_port.connect( 
      scoreboard1->rcv_listener_imp); 
  } 
 
}; 

Analysis ports of  the 
monitors are connected 

to the scoreboard 
subscribers (listeners) 

Virtual sequencer points 
to UVC sequencer 

NOTE: UVM-SystemC API under review – subject to change  
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• Each UVM test is defined as a 
dedicated C++ test class, which 
instantiates the test bench and 
defines the test sequence(s) 

• Reuse of tests and topologies is 
possible by deriving tests from a test 
base class 

• The UVM configuration and factory 
concept can be used to configure or 
override UVM components, 
sequences or sequence items 

• C++ base class: uvm_test 

UVM test 

20 

Testbench (env) 

….. 
agent 

UVC1 (env) 

Mon Drv 

Sqr 

agent 

UVC2 (env) 

Mon Drv 

Sqr conf conf 

config 

virtual 
sequencer 

scoreboard 

Subscr 
2 

ref 
model 

Subscr 
1 

Test config default 

sequence 



UVM-SystemC test 
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class test : public uvm_test 
{ 
 public: 

  testbench* tb; 
  bool test_pass; 
 
  test( uvm_name name ) : uvm_test( name ),  
    tb(0), test_pass(true) {} 

 
  UVM_COMPONENT_UTILS(test); 
 
  virtual void build_phase( uvm_phase& phase ) 
  { 

    uvm_test::build_phase(phase); 
    tb = testbench::type_id::create("tb", this); 
    assert(tb); 
 
    uvm_config_db<uvm_object_wrapper*>::set( this, 

     tb.uvc1.agent.sequencer.run_phase", "default_sequence", 
     vip_sequence<vip_trans>::type_id::get());  } 
 
 
    set_type_override_by_type( vip_driver<vip_trans>::get_type(), 

      new_driver<vip_trans>::get_type() ); 
    
    ... 
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The test instantiates 
the required test bench  

Specific class to  identify the 
test objects for execution in 

the sc_main  program 

NOTE: UVM-SystemC API under review – subject to change  

Factory method to override the 
original driver with a new driver 



UVM-SystemC test 
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  ... 
 
  virtual void run_phase( uvm_phase& phase ) 
  { 
    UVM_INFO( get_name(),  
      "** UVM TEST STARTED **", UVM_NONE ); 
  } 
 
  virtual void extract_phase( uvm_phase& phase ) 
  { 
    if ( tb->scoreboard1.error ) 
      test_pass = false; 
  } 
 
  virtual void report_phase( uvm_phase& phase ) 
  { 
    if ( test_pass ) 
      UVM_INFO( get_name(), "** UVM TEST PASSED **", UVM_NONE ); 
      else 
        UVM_ERROR( get_name(), "** UVM TEST FAILED **" ); 
  } 
}; 

Report results in 
the report phase 
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• The top-level (e.g. sc_main) 
contains the test(s) and the DUT 

• The interface to which the DUT is 
connected is stored in the 
configuration database, so it can 
be used by the UVCs to connect 
to the DUT 

• The test to be executed is either 
defined by the test class 
instantiation or by the argument 
of the member function run_test 

The main program (top-level) 
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int sc_main(int, char*[])  
{   
 

  dut* my_dut = new dut("my_dut"); 
 
  vip_if* vif_uvc1 = new vip_if; 
  vip_if* vif_uvc2 = new vip_if; 
 

 
 
  uvm_config_db<vip_if*>::set(0, "*.uvc1.*",  
                              "vif", vif_uvc1); 
  uvm_config_db<vip_if*>::set(0, "*.uvc2.*",  

                              "vif", vif_uvc2); 
 
 
  my_dut->in(vif_uvc1->sig_a); 
  my_dut->out(vif_uvc2->sig_a); 

 
  run_test("test"); 
 
  sc_start(); 
 

  return 0; 
} 

The main program 
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• Objective: seek further industry 
support and standardization of 
UVM in SystemC  

• UVM-SystemC contribution to 
Accellera Verification WG  
– UVM-SystemC Language Reference 

Manual (LRM) 
– UVM-SystemC Proof-of-Concept 

implementation, released under 
Apache 2.0 license 

• Align with SCV and Multi-Language 
requirements and future 
developments 

Contribution to Accellera 
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• Universal Verification Methodology created in SystemC/C++ 
– Fully compliant with UVM standard 
– Target is to make all essential features of UVM available in 

SystemC/C++ 
– UVM-SystemC language definition and proof-of-concept 

implementation contributed to Accellera Systems Initiative 

• Ongoing developments 
– Extend UVM-SystemC with constrained randomization capabilities 

using SystemC Verification Library (SCV) or CRAVE 
– Introduction of assertions and functional coverage features 
– Add register abstraction layer and callback mechanism 
– Introduce SystemC-AMS to support AMS system-level verification  

 

Summary and outlook 
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